
INSIDIOUS
AUDIT
REPORT

BAFI FINANCE

18908

INSIDIOUS-AUDIT-REPORT 11/18/2021

2 / 9

Contents

1. Introduction
1.1. About Project
1.2. Audit Goal
1.3. Disclaimer

2. Findings
2.1. Data Validation Issues - PASS
2.2. Random Number Issues - PASS
2.3. State Issues - PASS
2.4. Error Conditions, Return Values, Status Codes - PASS
2.5. Data Processing Errors - PASS
2.6. Bad Coding Practices - PASS
2.7. Permission Issues - PASS
2.8. Business Logic Errors - PASS
2.9. Complexity Issues - PASS

3. Conclusion
4. Appendix

4.1. Proper Implementation

INSIDIOUS-AUDIT-REPORT 11/18/2021

3 / 9

1. Introduction

1.1. About Project

Project Name: BAFI TOKEN
We audited BAFI smart contract deployed at https://bscscan.com/address/
0xa2f46fe221f34dac4cf078e6946a7cb4e373ad28. The BAFI is a standard
BEP20 token without any business logic.
The total supply is 100,000 and no emission or mint functions exist after initialization.

1.2. Audit Goal

Category Content Result

Data Validation Issues

Incorrect Behavior Order: Early Validation, Permissive List of
AllowedInputs, Unchecked Input for Loop Condition

PASS

Random Number
Issues

Small Space of Random Values, Incorrect Usage of Seeds in Pseudo-
RandomNumber Generator (PRNG)

PASS

State Issues

External Control of System or Configuration Setting, Incomplete Internal
StateDistinction, Passing Mutable Objects to an Untrusted Method

PASS

Error Conditions,
Return Values, Status
Codes

Unchecked Return Value, Unexpected Status Code or Return Value,
ReachableAssertion, Detection of Error Condition Without Action

PASS

Data Processing Errors

Collapse of Data into Unsafe Value, Improper Handling of
Parameters,Comparison of Incompatible Types

PASS

Bad Coding Practices

Missing Default Case in Switch Statement, Excessive Index Range Scan for
aData Resource, Excessive Platform Resource Consumption within a Loop

PASS

Permission Issues

Incorrect Default Permissions, Incorrect Execution-
AssignedPermissions, Improper Preservation of Permissions

PASS

Business Logic Errors

Unverified Ownership, Incorrect Ownership Assignment, Allocation
ofResources Without Limits or Throttling

PASS

Complexity Issues Loop Condition Value Update within the Loop, Excessively Deep Nesting PASS

1.3. Disclaimer
Note that this audit does not promise that all possible security concerns with the specified smart contract(s) will

be discovered; in other words, the evaluation result does not guarantee that no more security vulnerabilities will be
discovered. Because a single audit-based assessment cannot be considered thorough, we always propose conducting
multiple independent audits and participating in a public bug bounty program to assure smart contract security (s).
Finally, this security assessment should not be construed as investment advice.

INSIDIOUS-AUDIT-REPORT 11/18/2021

4 / 9

2. Findings

2.1. Data Validation Issues - PASS

This category includes flaws in a software system's input validation, output validation,
and other types of validation components. Validation is a common approach for checking
that data meets expectations before being processed further as input or output. Validation
comes in a variety of forms. Although developers may view all attempts to provide "safe"
inputs or outputs as validation, validation is separate from other strategies that attempt to
modify data before processing it. Regardless, validation is a powerful technique that is
frequently used to prevent malformed input from entering the system, as well as to
indirectly eliminate code injection and other potentially harmful patterns while creating
output. If not corrected, the flaws in this category may result in a decrease in the quality of
data flow in a system.

Test results: vulnerabilities not detected in smart contract code.
Recommendation: None.

2.2. Random Number Issues - PASS

This category contains flaws in a software system's random number generation.
Because the amount of possible random values is less than what the product requires, it is
more vulnerable to brute force attacks. The code employs a Pseudo-Random Number
Generator (PRNG) that fails to manage seeds properly.

Test results: vulnerabilities not detected in smart contract code.
Recommendation: None.

2.3. State Issues - PASS

This group of flaws is characterized by poor system state management. A user can
control one or more system settings or configuration items from the outside. The software
does not correctly determine which state it is in, leading it to believe it is in state X when it
is in state Y, causing it to perform security-relevant activities incorrectly.

Test results: vulnerabilities not detected in smart contract code.
Recommendation: None.

2.4. Error Conditions, Return Values, Status Codes - PASS

This category contains flaws that arise when a function does not generate the correct
return/status code, or when the application does not handle all of the various return/status
codes that a function could generate. This type of issue is most identified in conditions that

INSIDIOUS-AUDIT-REPORT 11/18/2021

5 / 9

are only experienced infrequently during the product's usual functioning. Most issues linked
to common conditions are probably discovered and fixed during development and testing. In
some circumstances, the attacker has direct control over or influence over the environment,
causing the uncommon conditions to occur.

Test results: vulnerabilities not detected in smart contract code.
Recommendation: None.

2.5. Data Processing Errors - PASS

Weaknesses in this area are usually identified in data processing functionality. The

manipulation of input to obtain or save information is known as data processing. The
software filters data in such a way that it is reduced or "collapsed" into an unsafe value that
violates a security property that is intended. When the expected number of values for
parameters, fields, or arguments is not provided in input, or if those values are undefined, the
software fail.

Test results: vulnerabilities not detected in smart contract code.
Recommendation: None.

2.6. Bad Coding Practices - PASS

Weaknesses in this category are associated with hazardous coding techniques that raise
the likelihood of an exploitable vulnerability being present in the program. These flaws do
not directly pose a vulnerability, but they do show that the product was not produced or
maintained with care. If a program is complicated, difficult to maintain, not portable, or
displays signs of neglect, there is a greater chance that flaws are hidden in the code.

Test results: vulnerabilities not detected in smart contract code.
Recommendation: None.

2.7. Permission Issues - PASS

Permissions are incorrectly assigned or handled, which is a weakness in this area. The
software sets the permissions of an object in a way that is incompatible with the user's
intended permissions while it is running. When copying, restoring, or sharing objects, the
software does not retain permissions or does so erroneously, resulting in less restrictive
permissions than intended.

Test results: vulnerabilities not detected in smart contract code.
Recommendation: None.

INSIDIOUS-AUDIT-REPORT 11/18/2021

6 / 9

2.8. Business Logic Errors - PASS

This category of flaws identifies some of the underlying issues that allow attackers to
modify an application's business logic. Business logic errors can be disastrous for an entire
application. Because they usually entail acceptable use of the application's capabilities, they
can be difficult to detect automatically. Many business logic problems, on the other hand,
can show patterns that are comparable to well-known implementation and design flaws.

Test results: vulnerabilities not detected in smart contract code.
Recommendation: None.

2.9. Complexity Issues - PASS

Overcomplicated objects are related with this group of flaws. The code contains a
callable or other code grouping in which the nesting / branching is too deep, or it employs a
loop with a control flow condition dependent on a value that is modified within the body of
the loop.

Test results: vulnerabilities not detected in smart contract code.
Recommendation: None.

INSIDIOUS-AUDIT-REPORT 11/18/2021

7 / 9

3. Conclusion

Use case of the smart contract is simple and the code is relatively small. No security
issues from external attackerswere identified and therefore the contract is good to be
deployed on public networks as per the audit team’s analysis.

INSIDIOUS-AUDIT-REPORT 08/15/2021

8 / 9

4. Appendix

4.1. Proper Implementation

This protects you from underflow and overflow attacks.

newOwner address value is properly checked.

_burn function here we are checking that token can only be burnt and not new emission

INSIDIOUS-AUDIT-REPORT 08/15/2021

9 / 9

Compiler version is not latest

=> In this file you have put “pragma solidity ^0.6.12;” which is not a good way to define
compiler version.

=> Solidity source files indicate the versions of the compiler they can be compiled with.
Pragma solidity ^0.5.16;
// bad: compiles ^0.5.16 and above pragma solidity 0.5.16; //good: compiles 0.5.16 only

=> If you put(^) symbol then you are able to get compiler version 0.5.16 and above. But if
you don’t use(^) symbol then you are able to use only 0.5.16 version. And if there are some
changes come in the compiler and you use the old version then some issues may come at
deploy time.

=> Solidity latest version is 0.8.X

Summary of the Audit

Overall, the code is well and performs well. Please try to check the address and value of
token externally before sending to the solidity code. Our final recommendation would be to
pay more attention to the visibility of the functions, hardcoded address, and mapping since
it’s quite important to define who’s supposed to execute the functions and to follow best
practices regarding the use of assert, require etc. (which you are doing ;)).

Note: Please focus on version of solidity (Use latest) and check addresses

